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0.1 The Valuation of European Calls

Let us recall the distribution we obtained in the limit for a binomial model under the
equivalent probabilities q:1

rT =

�
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2
�2
�
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TN(0; 1)
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��
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2
�2
�
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p
TN(0; 1)

�
:

where N(0; 1) denotes a standard normal random variable. From now on, we will use the
notation z to refer to such a variable.
Based on the discrete examples that we have examined, we have concluded that for a

given European payo¤X, its time-0 value V (0) is given by

V (0) = e�rTEq[X(T )]:

Without further proof, we will accept that the previous relation also holds in the limit,
when the number of intervals into which with divide interval [0; T ] tends to in�nity (or,
alternatively, � tends to 0).
In the following, we will concentrate on the valuation of a European call with the

payo¤X(T ) = max(S(T )�K; 0), where K is the strike price of the call.
We introduce the following notations:

�(z) =
1p
2�

Z z
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e�

1
2
z2 :

It is clear that � and ' are the c.d.f. and p.d.f., respectively, of a standard normal random
variable.2 Further, we have that �0(z) = '(z).
We now directly compute the discounted expected value of the payo¤ of a European

call:

V (0) = e�rT
Z +1

�1
max(S(T )�K; 0)'(z)dz

= e�rT
Z +1

�1
max(S(0) exp

��
r � 1

2
�2
�
T + �

p
Tz

�
�K; 0)'(z)dz:

1See the lectures notes titled "Option Pricing: Building the Lattice (2)" for details.

2You can use Matlab functions normcdf and normpdf , respectively, to compute the values of these
functions.
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Let z� be the value that satis�es the equation

S(T ) = S(0) exp

��
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p
Tz�

�
= K:

We immediately get that
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:

We can now eliminate the max function (why?):

V (0) = e�rT
Z +1
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It is easy to compute the value of B:

B =

Z +1

z�

'(z)dz

= P(z > z�)
= P(z < �z�)
= �(z�):

where P(z > z�) and P(z < �z�) represent the probabilities that the standard normal
random variable z is greater than or equal to, or less than z�, respectively. In order to
obtain the last equality we have used the symmetry properties of the p.d.f. of z; illustrated
in �gure 1.
We now focus on A:
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Figure 1: Diagram illustrating the symmetry of the p.d.f. for a standard normal variable.
The area of the shaded region on the left is equal to the area of the shaded region on the
right.

By using the change of variable u = z � �
p
T we get:

A =
e
1
2
�2T
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= e
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p
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We now replace the values of A and B into the expression for V (0):

V (0) = S(0)e�
1
2
�2T e

1
2
�2T�(�z� + �

p
T )| {z }

A

�Ke�rT�(z�)| {z }
B

:

Finally, we obtain the celebrated Black-Scholes valuation formula for European calls:

V (0) = S(0)�(�z� + �
p
T )�Ke�rT�(�z�):

Since we know the expression for z�, we can compute �z� and �z� + �
p
T explicitly.

Often, the Black-Scholes formulas are presented in a form in which the arguments of �
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are given as follows:

V (0) = S(0)�(z1)�Ke�rT�(z2)
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�
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0.2 Valuation of European Puts

We could compute the value of a European put following the same approach as above.
However, we can use the put-call parity to save most of the work.
From now on, we will use the usual notation C for calls, and P for European puts.

We immediately have:

C(0)� P (0) = S(0)�Ke�rT

�P (0) = S(0)� C(0)�Ke�rT

�P (0) = S(0)� (S(0)�(z1)�Ke�rT�(z2))�Ke�rT

�P (0) = S(0)(1� �(z1))�Ke�rT (1� �(z2)):

It is easy to rewrite expressions like 1� �(z) to a simpler form:

1� �(z) = 1�P(z0 6 z)
= P(z0 > z)

= P(z0 6 �z)
= �(�z):

This leads to the usual form for the price of the option:

P (0) = �S(0)�(�z1) +Ke�rT�(�z2):

0.3 "The Greeks"

Since we have explicit formulas for computing the time-0 values of European puts and
calls, we can study the sensitivity of the respective values to in�nitesimal changes in the
underlying parameters; these sensitivities are de�ned in table 1. Collectively, these �ve
quantities are known as "the Greeks" (named so out of respect for the civilization that
founded rational Western science, and not as a reminder of the fraternities�Greek system).
We note that while we are going to examine "the Greeks" only with respect to Eu-

ropean puts and calls, these sensitivities can be also be de�ned and studied for other
instruments or portfolios.
The Black-Scholes formula for the value of a call is

C = S�(z1)�Ke�rT�(z2):
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Name De�nition
delta � = @V

@S

gamma � = @2V
@S2

rho � = @V
@r

theta � = @V
@t

vega � = @V
@�

Table 1: The de�nition of sensitivities of values to in�nitesimal changes in various parame-
ters. Collectively, these quantities are known in the �nancial literature as "the Greeks."

(note that for brevity of notation we dropped the 0).
We might be tempted to conclude immediately that �c =

@C
@S
= �(z1), because it

seems that C depends explicitly only on the underlying stock price, through the presence
of S itself in the valuation formula. Of course, this is not true, as z1 and z2 both depend
on S. The answer is actually correct, but the correct computation is more convoluted
than it appeared at �rst sight.
We have successively:

�c =
@C

@S

=
@

@S

�
S�(z1)�Ke�rT�(z2)

�
= �(z1) + S

@�

@S
(z1)�Ke�rT

@�

@S
(z2):

It is easy to see that

@�

@S
(z) =

d�

dz

@z

@S

= '(z)
@z

@S

=
1p
2�
e�

1
2
z2 @z

@S
:

From the de�nition of z1 and z2 we get:

@z1
@S

=
@z2
@S

=
1

�S
p
T
:

We now return to the computation of delta:

�c = �(z1) +
1

�
p
2�T

�
e�

1
2
z21 � K

SerT
e�

1
2
z22

�
| {z }

E

:
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It turns out that E = 0. This can be seen by writing the following series of equivalent
equalities:

e�
1
2
z21 =

K

SerT
e�

1
2
z22 ;

e
1
2
(z22�z21) =

K

SerT
;

1

2
(z22 � z21) = lnK � lnS � rT;

�1
2
(z1 � z2)(z1 + z2) = lnK � lnS � rT;

�1
2
�
p
T

1

�
p
T
2

�
ln
S

K
+ rT

�
= lnK � lnS � rT;

lnK � lnS � rT = lnK � lnS � rT:

The last equality is clearly true; for the formal proof of the claim that E = 0, you can
read the series of equalities in reverse order.
We conclude that �c = �(z1).
The put-call parity immediately furnishes the value of the delta for European puts:

C � P = S �Ke�rT
@C

@S
� @P
@S

= 1

�p = �(z1)� 1:

Let us now compute gamma for European calls:

�c =
@2C

@S2
=
@�c

@S

=
@�

@S
(z1)

= '(z)
@z1
@S

=
'(z)

�S
p
T

=
1

�S
p
2�T

e�
1
2
z21 :

The gamma for European puts is identical to that of calls with the same maturity and
strike price:

C � P = S �Ke�rT
@2C

@S2
� @

2P

@S2
= 0

�p = �c =
'(z)

�S
p
T
:
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Name Calls Puts
� �(z1) �(z1)� 1
� '(z)

�S
p
T

� KTe�rT�(z2) �KTe�rT�(z2)
� ��'(z1)S

2
p
T
� rKe�rT�(z2) ��'(z1)S

2
p
T
+ rKerT�(�z2)

� '(z1)S
p
T

Table 2: Values for "the Greeks" for European calls and puts.

The full set of values for "the Greeks" of European puts and calls is given in table 2.
Let us now examine the evolution of �c as a function of S (i.e. varying S only, and

�xing all the other parameters). A typical dependency is shown in �gure 2.
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Figure 2: Variation of �c = �(z1) for a European call. Recall that z1 =
1

�
p
T

h
ln S(0)

K
+
�
r + 1

2
�2
�
T
i
. The values used to generate this graph are r = :02, T = 1,

K = 100, � = :25.

By examining �gure 2, we immediately note that limS!1�c = 1. This means that
for very large values of S, the call option on S changes in value almost exactly as much
the underlying stock. But why is it so? Here is a qualitative argument:
If the stock price is very large w.r.t. K, then it is very likely that S will stay above

K. If this is the case, the option will (almost) surely be exercised. In e¤ect, holding the
option is equivalent to a mandatory agreement to buy the underlying share at price K
at expiration time T ; such an agreement is called a forward contract. Based on a simple
arbitrage argument the price of such a forward contract must be S �Ke�rT , where S is
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the current price of the underlying stock.3Thus we have the approximate equality:

lim
S!1

C � S �Ke�rT :

Note that we are using the notation limS!1 loosely, to indicate a very large price for
the underlying, not a true limit computation.
Given the approximation above, it is easy to see that limS!1�c = 1, as we have

established previously.
What about the situation when the underlying stock price decreases toward 0? We

have established before, when we talked about the bounds for option prices, that if at any
time the price of a stock reaches 0, then it will always stay 0. This is true, in essence,
because the price of the stock represents the discounted value of its future cash �ows; if
such cash �ows are 0 now, they will also be 0 in the future. Now, if S = 0, then the call
will never be exercised, and thus C = 0, which immediately implies that �c = 0.
Argue that this last equality must hold approximately for very small - but non-zero -

values of S! Also, try to follow a similar line of reasoning for calls. Hint: The results can
most easily be obtained by using the put-call parity.

0.4 Hedging

Except, perhaps, for invesments in shortest-term Treasuries, all investments involve risks
(e.g. default risk, interest rate risk, in�ation risk). Unfortunately, the return on short-
term Treasuries is paltry, and does not satisfy the needs of most investors; hence, these
investors are continuously looking for better opportunities. Higher returns, however, are
also associate with higher risks. Put simply, if it is possible to achieve gains, then losses
are also possible. Even worse, in general the possibility of big gains is associated with the
possibility of big losses.
While gains are rewarding, individuals and institutions exhibit a high degree of loss

aversion, both for psychological and pragmatic reasons. Think, for example, of a pension
fund that must honor certain obligations at various future moments of time; its managers
would likely want to avoid situations when the value of their holdings decreases signi�-
cantly enough that these obligations can not be honored. If such an event occurs, their
investors will not be too much consoled by the fact that the fund had actually hoped to
increase the value of their assets by undertaking risky investments, but failed.
The considerations above imply that many investors are very motivated to manage the

risks they assume by undertaking various investements. They are desirious of eliminating
(or mitigating) the risk of downside from their portfolios, even if this means that they also
must give up some of the potential for the corresponding upside. Often, investors would
like their portfolios to be e¤ectively immune to certain random changes that could occur
in the economy, e.g. to changes in the level of interest rates.

3You can easily convince yourselves that this is true by constructing a portfolio that will reproduce
the payo¤ of the option at expiration S(T )�K. The time-0 value of this portfolio is S(0)�Ke�rT .
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0.4.1 Delta-Hedging

Let us consider a portfolio P, whose value depends, among other parameters, on the value
of an underlying instrument S. Portfolio P is given; it resulted as a series of transactions
in the past. In the extreme case, P might consist of a single instrument, but P might also
be a complex collection of diverse instruments. Our goal is to extend P with f units of a
new instrument, denoted D, so that the new portfolio becomes immune to in�nitesimal
changes in the underlying S. We get:

V = P+ fD
@V

@S
=
@P

@S|{z}
�P

+ f
@D

@S|{z}
�D

= 0:

Thus the number of units of D needed to immunize P is equal to

f = ��P

�D

:

Let us assume that D is the underlying itself, i.e. D = S, and P is a call. We then
get

f = ��C = ��(z1):
The last relation implies that in order to hedge a call, we must always short a fraction

of the underlying stock. To start understanding this relationship, let us examine �rst the
situation when the price of the underlying is so large that the call is, in e¤ect, equivalent
to a forward contract with value S �Ke�rT . In this case �C � 1, thus we must "add"
f = �1 units of stock to our portfolio. The extended portfolio will have a value of
approximately S�Ke�rT �S = �Ke�rT , which is immune to changes in the underlying,
within the precision of our approximation.
In practice, delta-hedging will not work perfectly, due to the following causes:

1. Our models are necessarily simpli�cations of reality, thus even an accurate compu-
tation of delta within the model will produce, in general, a value that is not equal
to the true delta.

2. Even if our models were perfectly accurate, our computations are not.

3. We assumed only an in�nitesimal change in the underlying�s price; in practice,
changes are necessarily �nite.

4. Hedging must occur continuously, i.e. it must be done on intervals of time of in�n-
itesimal length. Again, this is impossible in practice.

5. We have ignored transaction costs. For hedging operations that involve (in�nitely)
frequent trades, this is clearly not reasonable.
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For all the reasons listed above, we have to accept that delta-hedging will inherently be
approximate in any practical setting. An approximate hedge, however, is still far better
than not having a hedge at all.
Here is how practical hedging can be implemented:

1. Initially, one must compute f , and buy f units of D, and add them to the portfolio.
Any money needed for this must be borrowed from the money market account.

Note: Strictly speaking, "buy" must be replaced with "sell," and "borrow" must be
replaced with "lend," if f < 0. A similar issue arises for the �nite changes in f , �f
which induces further buying if �f > 0, or selling, if �f < 0.

2. After a short period of time, we compute the new value of f , and the change of f
from the time of the last rebalancing operation, �f . We then buy (sell) �f units of
D, and borrow from (or return money into) the money market account. We repeat
this procedure as often as practical under the circumstances.

0.4.2 Gamma-Hedging

One reason for the imperfect functioning of the delta-hedge, as we pointed out above, is
that in practice we have to deal with �nite (as opposed to in�nitesimal) price changes and
�nite-length intervals. One problem is that deltas themselves change as the price of the
underlying changes. This observation can be used to build portfolios that are immune to
in�nitesimal changes in delta induced by changes in the price of the underlying. We thus
need to create portfolios whose gamma is equal to 0. We can achieve this by extending
the original portfolio P with two instruments D1, and D2. We then have:

V = P+ f1D + f2D8>>>>>><>>>>>>:

@V
@S
=
@P

@S|{z}
�P

+ f1
@D1

@S|{z}
�D1

+ f2
@D2

@S|{z}
�D2

= 0

@2V
@S2

=
@2P

@S2|{z}
�P

+ f1
@2D1

@S2| {z }
�D1

+ f2
@2D2

@S2| {z }
�D2

= 0

�
�P + f1�D1 + f2�D2 = 0
�P + f1�D1 + f2�D2 = 0

:

The last system of equations can be solved to obtain the values of f1 and f2.
Like we did before, we can assume that one of the instruments that is used for hedging

is the underlying itself. Let us assume that D2 = S. We now obtain a simpler form for
the system of equations: �

�P + f1�D1 + f2 = 0
�P + f1�D1 = 0

:
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This simple form allows us to construct a gamma-hedged portfolio in two simple steps.
First, we use the second equation to determine the number of units of D1 that we need to
make the composite portfolio gamma-neutral; f1 = � �P

�D1
. Adding the underlying to this

portfolio does not make any di¤erence, as �2 = �s = 0. We can then determine the number
of units of the underlying needed to make the portfolio delta-neutral; f2 = ��P �f1�D1.
The simpli�ed procedure above is possible because �s = 0. Such an equality also holds

for the money market account B: �B = 0. Can we use the money market account to
hedge our portfolio? The system of equations is reduced to the following:�

�P + f1�D1 + f20 = 0
�P + f1�D1 + f20 = 0

:

The two equations provide the value of f1 independently, to be � �P
�D1

, and � �P
�D1
,

respectively. As in general these two quantities are not equal, hedging with the money
market account is not possible. This is ultimately due to the fact that �B = �B = 0.
Finally, we note that gamma-hedging, while more resilient than simple delta-hedging,

is still approximate for �nite changes in the underlying�s price.

0.4.3 Computational Issues

As pointed out above, "the Greeks" can be de�ned for other instruments than options,
and also for portfolios. For the case of European puts and calls in the Black-Scholes model
we are in the fortunate situation in which we have analytic valuation formulas, which can
then be used to determine the values for "the Greeks."
In general, however, we do not have closed-form formulas. Can we still compute "the

Greeks" under these circumstances? Yes.
In fact, all we need to do is to employ the techniques we have discussed before. If

we assume that we have a numerical method to compute the value of a given instrument
or portfolio. Let us denote the value returned by this procedure with V(t; S; r; �). We
have made explicit the dependency of V on the parameters relevant for "the Greeks;" of
course, V might depend on other parameters as well. We can then compute approximate
values for � and �, for example, by using the formulas below:

� � V(t; S + hs; r; �)�V(t; S � hs; r; �)
2hs

� � V(t; S + hs; r; �)� 2V(t; S; r; �) +V(t; S � hs; r; �)
h2s

:

Approximate values for the other "Greeks" can be computed similarly.
All techniques (e.g. Richardson�s extrapolation), comments, and observations that

we made when discussing numerical di¤erentiation in general still hold. We just note
here that if an instrument is very insensitive to the change in S, for example, then the
expressions that de�ne � and � might su¤er from cancellation errors; their value will
be determined mostly by accumulated computational errors, and will not re�ect the true
values.
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0.5 The Black-Scholes Di¤erential Equation

0.5.1 Stochastic Di¤erential Equation for the Evolution of S

For this section, you will have to recall our discussion on the evolution of stock prices.
We can summarize our earlies conclusions as follows (rT = log S(T )

S(0)
, the interval under

examination is [0; T ]): 8<:
rT is normal
E[rt] = �T
V ar[rt] = �

2T
:

These statements imply that the stock prices themselves are log-normally distributed.
We can summarize our conclusions by writing:

rT = log
S(T )

S(0)
= �T + �z

p
T ;

where z is a standard normal random variable.
Assume now that the length of the interval [0; T ] decreases toward 0:

log
S(T )

S(0)
= log

�
1 +

S(T )� S(0)
S(0)

�
= log

�
1 +

�S

S(0)

�
� �S

S(0)
:

The last step is justi�ed by the assumption that as the length of the interval de-
creases toward 0, the change of the stock price that corresponds to the respective interval
decreases. We then used the approximation that for small x, log(1 + x) � x.4
When T becomes very small, we can write �S

S(0)
as dS

S
, to emphasize this smallness;

also, we can write T = dt.
The quantity �z

p
T , however, does not necessarily decrease toward 0 as T becomes

very small. This is because z is a standard random variable whose magnitude does not
depend on the length of the interval. As we decrease the length of the interval, the
probability of getting a small value for �z

p
T becomes very large, but there will always

be a non-zero probability for �z
p
T to be arbitrarily large.5 This is true because z can

take values that are arbitrarily large, and the magnitude of z can compensate for the
smallness of T .
The quantity that we associate with z

p
T is traditionally examined by identifying

it with the increments over [0; T ] of a stochastic process, named the Wiener process.
Introducing the notation W (t) for the process itself, and dW (t) for its increments, we

4You can verify this if you consider a Taylor-series expansion of log(1 + x) around 0.
5Note that if z

p
T is large, then our approximation for the natural logarithm will not hold. We are

glossing over some details in order to focus on the main issues.
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can write the relationship that expresses the random changes in the stock price over
in�nitesimal intervals:

dS(t) = �S(t)dt+ �S(t)dW (t):

Note that in the formula above we have made explicit the dependence of S and W on
time. We will not use this explicit notation systematically, but we should be aware such
a dependency exists.
The Wiener process has very important practical applications and it is studied ex-

tensively in courses on stochastic calculus. We list some its properties without further
proof:

1. W (t) is continuous at every point, but not di¤erentiable at any point.

2. No matter where is starts, W will ultimately hit all points. Once W hits a point, it
will hit it in�nitely often immediately after that.

3. The increments �W of W on any time interval �t are normally distributed, such
that E[�W ] = 0, V ar[�W ] = �t.

4. The increments of W on non-overlapping intervals are independent.

0.5.2 Stochastic Di¤erential Equation for the Evolution of a European Pay-
o¤�s Value

Assume that we have a European instrument whose value V = V (t; S) depends on time,
and on the value of an underlying S. The value might depend on other parameters as
well (for example, on volatility), but these parameters will be assumed to be constant.
Further, assume that the in�nitesimal changes in S are given by dS = Adt+BdW , where
W is a standard Wiener process.
Assuming for a moment that dW is a regular (i.e. non-random) di¤erential. Using

the rules of di¤erential calculus we get the following equalities:

dV =
@V

@t
dt+

@V

@S
dS

dV =
@V

@t
dt+

@V

@S
(Adt+BdW )

dV = B
@V

@S
dW +

�
@V

@t
+ A

@V

@S

�
dt:

Due to the unusual nature of the Wiener process the last equality derived above does
not hold. Without further proof, we will provide the correct result, which is

dV = B
@V

@S
dW +

�
@V

@t
+
1

2
B2
@2V

@S2
+ A

@V

@S

�
dt:

This result is known as (a particular case of) Itô�s lemma. Due to the randomness in
the Wiener process, a new term had to be added to establish equality.
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By introducing the known values for A and B in the formula from Itô�s lemma, we
obtain the following:

dV = �S
@V

@S
dW +

�
@V

@t
+
1

2
�2S2

@2V

@S2
+ �S

@V

@S

�
dt:

0.5.3 Eliminating Randomness

Consider a portfolio that consists of one unit of V , and � units of the underlying S, where
� is a �xed number left unspeci�ed for now. We get:

P = V ��S

dP = dV ��dS:
By replacing the known expressions for dV and dS in the equality above, we obtain

that

dV = �S

�
@V

@S
��

�
dW +

�
@V

@t
+
1

2
�2S2

@2V

@S2
+ �S

�
@V

@S
��

��
dt:

By choosing � to be equal to @V
@S
(which is exactly the way we de�ned � above, as

the sensitivity of the value to in�nitesimal changes in the price of the underlying), the
formula simpli�es to

dP =

�
@V

@t
+
1

2
�2S2

@2V

@S2

�
dt:

The last equality is remarkable because it contains no random component; all ran-
domness has been eliminated due to the clever choice of �. Note that � is �xed on each
in�nitesimal interval, but it changes from one such interval to the next one. This idea is
akin to the continuous rebalanced delta-hedging that we studied above.
Since the quantity dP is deterministic, its magnitude can be related to the amount

of money that would be earned on the money market account if an amount equal to P
were invested for an in�nitesimal period dt. It turns out that the two quantities must be
equal: dP = rPdt.
The justi�cation of the last relation is immediate, and it is based on arbitrage con-

siderations. Indeed, assume for a moment that dP > rPdt. As both quantities in this
expression are known at the beginning of the interval - and they are deterministic - we
could choose to borrow money from the money market account and invest it in our port-
folio. If we did this, we could earn with certainty an amount dP � rPdt > 0. This is a
clear case of arbitrage! A similar reasoning will convince us that it is not possible to have
dP < rPdt.
By replacing the expression for dP and P in the equality dP = rPdt, we get:

@V

@t
+
1

2
�2S2

@2V

@S2
= r

�
V � S@V

@S

�
:
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We have �nally obtained the celebrated Black-Scholes di¤erential equation for Euro-
pean options:

@V

@t
+
1

2
�2S2

@2V

@S2
+ rS

@V

@S
� rV = 0:

By introducing the operator L = @
@t
+ 1
2
�2S2 @

2

@S2
+rS @

@S
�r, we can rewrite the equation

in the form LV = 0.
Such a di¤erential equation can not be solved fully without imposing a set of conditions

on it.

0.5.4 Conditions for European Calls

For speci�city, we replace V (t; S) by C(t; S). We obtain the following conditions:

C(T; S) = max(S �K; 0)
C(t; 0) = 0

lim
S!1

C(t; S) = S �Ke�r(T�t):

Again, note that we are using the limit notation loosely, to indicate that the equality
holds approximately for very large values of S.

0.5.5 Conditions for European Puts

By denoting V (t; S) with P (t; S), we obtain:

P (T; S) = max(K � S; 0)
P (t; 0) = Ke�r(T�t)

lim
S!1

P (t; S) = 0:

These relations can be obtained from the put-call parity. It is interesting to note that
if S = 0 at a certain moment of time then the put will be surely exercised (we know this
because S will be 0 for all future moments of time as well). If the put will be exercised for
sure, its value must be the present value at time t of its strike price K received at time
T . This is an alternative proof for the second equality above.

0.6 Reduction to the Heat Equation

The Black-Scholes di¤erential equation, as written, is a backward-parabolic equation.6

Directly solving this equation is not easy, one reason being that conditions are given not
for the initial time t = 0, but for the expiration time t = T . Rather than "propagating"
the initial conditions toward the future, we need to "bring back" the �nal conditions
toward the past. This is not easy to do. To avoid these di¢ culties we transform the

6For details, see section 1.2 of the handout titled "Partial Di¤erential Equations."
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Black-Scholes di¤erential equation into a forward equation. By using a series of suitable
substitutions, in fact, we will achieve even more: we will simplify the form of the equation
by reducing it to the heat equation.

0.6.1 Transformation to a Forward Equation

We perform the following substitutions8<:
S = Kex

t = T � 1
1
2
�2
�

V (t; S) = Kv(� ; x)

:

in the Black-Scholes di¤erential equation given below:

@V

@t
+
1

2
�2S2

@2V

@S2
+ rS

@V

@S
� rV = 0:

We start by expressing all the terms that appear in the di¤erential equation in terms
of the new variables.

@V

@t
= K

@v

@t
(� ; x)

= K
@v

@�

@�

@t

= �1
2
�2K

@v

@�
:

Here is the computation for the �rst order partial derivative with the respect to the
price of the underlying S:

@V

@S
= K

@v

@S
(� ; x)

= K
@v

@x

=
K

S

@v

@x
:

We can now compute the second derivative:

@2V

@S2
=

@

@S

�
K

S

@v

@x

�
= �K

S2
@v

@x
+
K

S

@2v

@x2
@x

@S

=
K

S2

�
�@v
@x
+
@2v

@x2

�
=

1

Ke2x

�
�@v
@x
+
@2v

@x2

�
:
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Old Condition Transformed Condition
C(t; 0) = 0 limx!�1Cv(� ; x) = 0

limlimx!1 C(t; S) = S �Ke�r(T�t) limx!1Cv(� ; x) = e
x � e�k�

C(T; S) = max(S �K; 0) Cv(0; x) = max(e
x � 1; 0)

Table 3: Original, and transformed conditions for European calls. Note: We employed
the notation Cv for the transformed European call value function.

We now replace these terms in the Black-Scholes equation:

�1
2
�2K

@v

@�
+
1

2
�2S2

K

S2

�
�@v
@x
+
@2v

@x2

�
+ rS

K

S

@v

@x
� rKv = 0

�1
2
�2
@v

@�
+
1

2
�2
�
�@v
@x
+
@2v

@x2

�
+ r

@v

@x
� rv = 0

�@v
@�
� @v
@x
+
@2v

@x2
+

r
1
2
�2
@v

@x
� r

1
2
�2
v = 0

�@v
@�
+

�
r
1
2
�2
� 1
�
@v

@x
+
@2v

@x2
� r

1
2
�2
v = 0:

If we introduce the notation k = r
1
2
�2
, we get:

�@v
@�
+ (k � 1) @v

@x
+
@2v

@x2
� kv = 0:

We must not forget to rewrite the conditions so that they correspond to the new
variables.

x = ln
S

K
)
�
S ! 0) x! �1
S !1) x!1

� =
1

2
�2(T � t))

�
t! 0) � = 1

2
�2T

t! T ) � = 0
:

The upper and lower boundaries are now at �1. More importantly, the "arrow of
time" has been reversed. By introducing � , the time in the transformed equation �ows
backwards versus the time in the initial equation. This has the advantage that the end
condition that we had before can be transformed into an initial condition. For calls, we
obtain conditions given in table 3.
Try to derive analogous formulas for European puts!

0.6.2 Reduction to the Heat Equation

At this point, we have succeeded in transforming the di¤erential equation to a forward
equation, i.e. we have conditions at t = 0, and at the boundaries x = �1 and x = 1.
The form of the di¤erential equation, however, is still not simple enough for our purposes.
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We now proceed to reduce the equation to the heat equation. Leaving - for the moment
- quantities � and � to be indeterminate, we perform the following change of function:

v(� ; x) = e�x+��u(� ; x):

We now determine the form of the terms that appear in the di¤erential equation:

@v

@�
=

�
�u+

@u

@�

�
e�x+��

@v

@x
=

�
�u+

@u

@x

�
e�x+��

@2v

@x2
=

@

@x

��
�u+

@u

@x

�
e�x+��

�
=

�
�
@u

@x
+
@2u

@x2
+ �

�
�u+

@u

@x

��
e�x+��

=

�
�2u+ 2�

@u

@x
+
@2u

@x2

�
e�x+�� :

After replacing the terms in the di¤erential equation and dividing by e�x+�� , we get:

�
�
�u+

@u

@�

�
+

�
�2u+ 2�

@u

@x
+
@2u

@x2

�
+ (k � 1)

�
�u+

@u

@x

�
� ku = 0:

�@u
@�
+ (2�+ k � 1)@u

@x
+
@2u

@x2
+
�
�� + �(k � 1) + �2 � k

�
u = 0:

We eliminate the term containing u by requiring that �� + �(k � 1) + �2 � k = 0.
This gives us a value for � in terms of � and k:

� = �(k � 1) + �2 � k:

Setting 2�+ k � 1 = 0, we can also eliminate the term containing @u
@x
. We obtain:

� = �1
2
(k � 1)

� = �1
2
(k � 1)2 + 1

4
(k � 1)2 � k = �1

4
(k + 1)2:

With these values for � and �, we can determine the actual substitution needed to
reduce the di¤erential equation from the intermediate stage to the heat equation:

v(� ; x) = e�
1
2
(k�1)x� 1

4
(k+1)2�u(� ; x):

With this substitution, we have shown that the Black-Scholes equation reduces to the
heat equation:

@u

@�
=
@2u

@x2
:
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We must, of course, also rewrite the conditions so that they correspond to the variable
transformation that we have employed. By using Cu to denote the function giving the
value of the European call in the variables that correspond to the last substitution, we
obtain the following set of conditions:

lim
x!�1

Cu(� ; x) = 0

lim
x!1

Cu(� ; x) = e
1
2
(k�1)x+ 1

4
(k+1)2�

�
ex � e�k�

�
Cu(0; x) = max(e

1
2
(k+1)x � e 12 (k�1)x; 0):

Again, you should try to derive analog formulas for European puts.

0.6.3 Computational Issues

It is possible to analytically solve the heat equation with the conditions that we have
speci�ed above. We can then undo the variable transformations and �nd the solution in
the original variables. As we already know the Black-Scholes valuations formulas from an
alternative proof, we do not need to do that again. Instead, we focus on the numerical
solution. The insights we gain here can later be generalized to problems that do not admit
closed-form solutions.
We have discussed extensively how to solve the heat equation; and we have described

in detail three methods: the explicit method, the fully implicit method, and the Crank-
Nicholson method. From among the methods studied we recommended Crank-Nicholson,
because it is both precise (it has an error term O((�t)2) + O((�x)2)), and uncondition-
ally stable7 (i.e. we can choose any values for � = �t

(�x)2
without worrying that small

perturbations in the solution will grow unboundedly).
We also know how to handle conditions at �1; we just replace the in�nite values with

suitably chosen value Nmin and Nmax, which are "good" approximations of in�nity in the
context of our problem.
In principle, we are done. In practice, �nite di¤erence methods su¤er from a subtle

problem induced by the changes of variable that we performed, and by the requirement
to use a regularly spaced grid in the space of the transformed variables.
Let us recall the variable changes that we undertook:

S = Kex

t = T � 1
1
2
�2
� :

When solving the heat equation, we are discretizing the domain in the x and � vari-
ables. Let us assume that the grid steps along the space and time dimension are �x, and

7Note that stability is only one precondition for us to get a solution close to the true one. Accuracy
is also required. While in the limit, when both �t! 0 and �x! 0, Crank-Nicholson will converge to the
true solution, the choice �nite values for �t and �x (and - implicitly - for �) will in�uence the quality of
the solution we get.
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�� , respectively. These steps correspond to changes in the variables S and t as well:

Sk+1 = Kexk+1 = Kexk+�x = Ske
�x

tk+1 = tk �
1
1
2
�2
�� :

While the regular grid along the transformed time dimension induces a regular grid in
the original time dimension, the regular grid in the transformed space dimension induces
an irregular grid in the original space dimension. It is the ratio Sk+1

Sk
that is constant, not

the di¤erence Sk+1�Sk! More, as �� > 0, this ratio is superunitary, which means that the
length of intervals Sk+1 � Sk monotonically increases toward the right end of the interval
[Smin; Smax].
The relation between the grids in the original and the transformed coordinates is

illustrated in �gure 3.
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Figure 3: Relationship between the regular grid in the coordinate system (� ; x) of the
transformed equations, and the introduced irregular grid in the original system of coordi-
nates (t; S). The values shown here have been obtained for S 2 [:1; 200], K = 100, T = 1,
� = :25. There are 25 intervals along both dimensions in both grids. Two corresponding
points are shown explicitly.

Our insights into the irregularity of the grid in the original coordinates must inform
the way in which we structure our computations. If we want to sample the solution of
the Black-Scholes equation with a step in the original space coordinate not larger than,
say, �S, we must choose the step in the transformed system of coordinates accordingly.
Let us assume that S 2 [Smin; Smax]; this means that the transformed coordinate x

will be in the interval [log Smin
K
; log Smax

K
]. Further, assume that we divide the domain

20



of variation of x into Nx subintervals of length �x each. This division also induces Nx
intervals on the original coordinate S.
The largest induced step in the original space coordinate (S) occurs on the last subin-

terval of x. Using notation analogous to that introduced when studying �nite di¤erence
methods, we have:

Sk = Ke
xk ; k = 0; Nx; xk = xmin + k�x:

Now we can write the following:

SNx � SNx�1 = Kexmax �Kexmax��x 6 �S

Kexmax| {z }
Smax

(1� e��x) 6 �S:

After some simple algebraic manipulation, we get:

�x 6 � log
�
1� �S

Smax

�
� �S

Smax
:

Let us assume that we choose the highest value for �x consistent with the inequality
above. For simplicity, we will assume that this value leads to an integer number of
intervals. Let us compute the smallest interval induced by our choice of �x in the original
space coordinate. This smallest interval corresponds to the following di¤erence:

S1 � S0 = Kexmin+�x �Kexmin
= Kexmin| {z }

Smin

(e�x � 1)

= Smin

h
e� log(1�

�S
Smax

) � 1
i

=
Smin

Smax ��S
�S

� Smin
Smax

�S:

In order for xmin and xmax to be "good approximations" of �1, we must choose Smin to
be close to 0, and Smax to be much higher than K. Let us pick Smin = :1, and Smax = 200
(for a strike price of, say, K = 100). If the largest induced interval in the original space
coordinate will be of length no greater than �S, then the smallest induced interval will
be approximately of length :0005�S. The ratio between the smallest and longest interval
in the original coordinate S is 1 : 2000 for this example! Clearly, we will end up doing a
lot of unnecessary work. This observation points to a clear limitation of �nite di¤erence
methods.
Ideally, we would like create a regular grid in the original coordinates (t; S), and then

use a method that can handle an irregular grid in the transformed coordinates. Such
methods exist, and are known as �nite element methods. We will not study �nite element
methods in this class.
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Using �nite di¤erences we obtain the approximate values of the solution only at a set
of discrete points (the grid nodes). If we are also interested in the value of the examined
option at intermediate points as well, we can use interpolation methods to obtain an
approximate value based on the values associated with the neighboring grid points.
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